48 research outputs found

    Diagnostic reference levels and optimization in radiology: where do we go from here?

    Get PDF
    No abstract available

    Unintended and accidental medical radiation exposures in radiology: guidelines on investigation and prevention

    Get PDF
    This paper sets out guidelines for managing radiation exposure incidents involving patients in diagnostic and interventional radiology. The work is based on collation of experiences from representatives of international and national organizations for radiologists, medical physicists, radiographers, regulators, and equipment manufacturers, derived from an International Atomic Energy Agency Technical Meeting. More serious overexposures can result in skin doses high enough to produce tissue reactions, in interventional procedures and computed tomography, most notably from perfusion studies. A major factor involved has been deficiencies in training of staff in operation of equipment and optimization techniques. The use of checklists and time outs before procedures commence, and dose alerts when critical levels are reached during procedures can provide safeguards to reduce risks of these effects occurring. However, unintended and accidental overexposures resulting in relatively small additional doses can take place in any diagnostic or interventional X-ray procedure and it is important to learn from errors that occur, as these may lead to increased risks of stochastic effects. Such events may involve the wrong examinations, procedural errors, or equipment faults. Guidance is given on prevention, investigation and dose calculation for radiology exposure incidents within healthcare facilities. Responsibilities should be clearly set out in formal policies, and procedures should be in place to ensure that root causes are identified and deficiencies addressed. When an overexposure of a patient or an unintended exposure of a foetus occurs, the foetal, organ, skin and/or effective dose may be estimated from exposure data. When doses are very low, generic values for the examination may be sufficient, but a full assessment of doses to all exposed organs and tissues may sometimes be required. The use of general terminology to describe risks from stochastic effects is recommended rather than calculation of numerical values, as these are misleading when applied to individuals

    Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease

    Get PDF
    Background The seventh Committee on "Biological Effects of Ionizing Radiation" (BEIR VII, 2006) underlines "the need of studies of infants who are exposed to diagnostic radiation because catheters have been placed in their hearts". Objective To determine the lifetime attributable risk (LAR) of cancer associated with the estimated cumulative radiological dose in 59 children (42 male, age 2.863.2 years) with complex congenital heart disease, and to assess chromosomal DNA damage after cardiac catheterisation procedures. Methods In all patients, the cumulative exposure was estimated as effective dose in milliSievert (mSv), and LAR cancer was determined from the BEIR VII report. In a subset of 18 patients (13 male, age 5.265.7 years) micronucleus as a biomarker of DNA damage and longterm risk predictor of cancer was assayed before and 2 h after catheterisation procedures. Doseearea product (Gy cm2) was assessed as a measure of patient dose. Results The median life time cumulative effective dose was 7.7 mSv per patient (range 4.6e41.2). Cardiac catheterisation procedures and CT were responsible for 95% of the total effective dose. For a 1-year-old child, the LAR cancer was 1 in 382 (25th to 75th centiles: 1 in 531 to 1 in 187) and 1 in 156 (25th to 75th centiles: 1 in 239 to 1 in 83) for male and female patients, respectively. Median micronucleus values increased significantly after the procedure in comparison with baseline (before 6&vs after 9&, p?0.02). The median doseearea product value was 20 Gy cm2 (range 1e277). Conclusion Children with congenital heart disease are exposed to a significant cumulative dose. Indirect cancer risk estimations and direct DNA data both emphasise the need for strict radiation dose optimisation in children

    Benefits and limitations for the use of radiation dose management systems in medical imaging. Practical experience in a university hospital

    Get PDF
    Objectives: Radiation dose management systems (DMS) are currently used to help improve radiation protection in medical imaging and interventions. This study presents our experience using a homemade DMS called DOLQA (Dose On-Line for Quality Assurance). Methods: Our DMS is connected to 14 X-ray systems in a university hospital linked to the central data repository of a large network of 16 public hospitals in the Autonomous Community of Madrid, with 6.7 million inhabitants. The system allows us to manage individual patient dose data and groups of procedures with the same clinical indications, and compare them with diagnostic reference levels (DRLs). The system can also help to prioritise optimisation actions. Results: This study includes results of imaging examinations from 2020, with 37,601 procedures and 286,471 radiation events included in the radiation dose structured reports (RDSR), for computed tomography (CT), interventional procedures, positron emission tomography-CT (PET-CT) and mammography. Conclusions: The benefits of the system include: automatic registration and management of patient doses, creation of dose reports for patients, information on recurrent examinations, high dose alerts, and help to define optimisation actions. The system requires the support of medical physicists and implication of radiologists and radiographers. DMSs must undergo periodic quality controls and audit reports must be drawn up and submitted to the hospital’s quality committee. The drawbacks of DMSs include the need for continuous external support (medical physics experts, radiologists, radiographers, technical services of imaging equipment and hospital informatics services) and the need to include data on clinical indication for the imaging procedures. Advances in knowledge: DMS perform automatic management of radiation doses, produces patient dose reports, and registers high dose alerts to suggest optimisation actions. Benefits and limitations are derived from the practical experience in a large university hospital

    Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: Insights from the National Research Council\u27s Biological Effects of Ionizing Radiation VII Report

    Get PDF
    Background Occupational doses from fluoroscopy-guided interventional procedures are the highest ones registered among medical staff using x-rays. The aim of the present study was to evaluate the order of magnitude of cancer risk caused by professional radiation exposure in modern invasive cardiology practice. Methods From the dosimetric Tuscany Health Physics data bank of 2006, we selected dosimetric data of the 26 (7 women, 19 men; age 46 ? 9 years) workers of the cardiovascular catheterization laboratory with effective dose N2 mSv. Effective dose (E) was expressed in milliSievert, calculated from personal dose equivalent registered by the thermoluminescent dosimeter, at waist or chest, under the apron, according to the recommendations of National Council of Radiation Protection. Lifetime attributable risk of cancer was estimated using the approach of Biological Effects of Ionizing Radiation 2006 report VII. Results Cardiac catheterization laboratory staff represented 67% of the 6 workers with yearly exposure N6 mSv. Of the 26 workers with 2006 exposure N2 mSv, 15 of them had complete records of at least 10 (up to 25) consecutive years. For these 15 subjects having a more complete lifetime dosimetric history, the median individual effective dose was 46 mSv (interquartile range = 24-64). The median risk of (fatal and nonfatal) cancer (Biological Effects of Ionizing Radiation 2006) was 1 in 192 (interquartile range = 1 in 137-1 in 370). Conclusions Cumulative professional radiological exposure is associated with a non-negligible Lifetime attributable risk of cancer for the most exposed contemporary cardiac catheterization laboratory staff

    EFOMP project on the role of biomedical physics in the education of healthcare professionals

    Get PDF
    The policy statements describing the role of the medical physicist (and engineer) published by organizations representing medical physics (and engineering) in Europe include the responsibility of providing a contribution to the education of healthcare professionals (physicians and paramedical professions). As a consequence, medical physicists and engineers provide educational services in most Faculties of Medicine / Health Science in Europe. In 2005, the EFOMP council took the decision to set up a Special Interest Group to develop the role of the medical physics educator in such faculties and to work with other healthcare professional groups to produce updated European curricula for them. The effort of the group would provide a base for the progress of the role, its relevance to contemporary healthcare professional education and provide input for future EFOMP policy documents regarding this important aspect of the role of the medical physicist. The present communication will present the group, summarise its latest research and indicate future research directions.peer-reviewe

    The Radiation Issue in Cardiology: the time for action is now

    Get PDF
    The "radiation issue" is the need to consider possible deterministic effects (e.g., skin injuries) and long-term cancer risks due to ionizing radiation in the risk-benefit assessment of diagnostic or therapeutic testing. Although there are currently no data showing that high-dose medical studies have actually increased the incidence of cancer, the "linear-no threshold" model in radioprotection assumes that no safe dose exists; all doses add up in determining cancer risks; and the risk increases linearly with increasing radiation dose. The possibility of deterministic effects should also be considered when skin or lens doses may be over the threshold. Cardiologists have a special mission to avoid unjustified or non-optimized use of radiation, since they are responsible for 45% of the entire cumulative effective dose of 3.0 mSv (similar to the radiological risk of 150 chest x-rays) per head per year to the US population from all medical sources except radiotherapy. In addition, interventional cardiologists have an exposure per head per year two to three times higher than that of radiologists. The most active and experienced interventional cardiologists in high volume cath labs have an annual exposure equivalent to around 5 mSv per head and a professional lifetime attributable to excess cancer risk on the order of magnitude of 1 in 100. Cardiologists are the contemporary radiologists but sometimes imperfectly aware of the radiological dose of the examination they prescribe or practice, which can range from the equivalent of 1-60 mSv around a reference dose average of 10-15 mSv for a percutaneous coronary intervention, a cardiac radiofrequency ablation, a multi-detector coronary angiography, or a myocardial perfusion imaging scintigraphy. A good cardiologist cannot be afraid of life-saving radiation, but must be afraid of radiation unawareness and negligence
    corecore